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Thermal-fluctuation approach to Fréedericksz transitions in nematic liquid crystals

P. Galatola, C. Oldano, and M. Rajteri
Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
(Received 12 August 1992; revised manuscript received 26 February 1993)

The boundary effects on the thermal fluctuations of the director in a planar nematic-liquid-
crystal cell with strong anchoring conditions in the presence of an electric field, coupled to the
dielectric anisotropy and to flexoelectric polarization, are theoretically studied. The conditions for
second-order Fréedericksz-type transitions and the actual shape of the distortion above the threshold
are analyzed by considering the critical eigenmodes of the fluctuations. A phase diagram for the
different types of distortions, periodic or aperiodic, is obtained through a fully analytic calculation.
These results allow for a better interpretation of the light-scattering experiments and give a unified
picture of the instabilities, induced by the flexoelectricity and by the elastic constant anisotropy,

which give static periodic structures.

PACS number(s): 61.30.Gd, 64.70.Md

I. INTRODUCTION

A very important characteristic of nematic liquid crys-
tals is their strong light scattering due to the thermal
fluctuations of the director i, that gives the local aver-
age alignment of the molecules [1].

Light-scattering experiments are a powerful tool for the
verification of any theory of nematic order and for the
measurement of many physical parameters, such as, for
example, the curvature elastic constants and the viscosi-
ties of thermotropic [2] and lyotropic [3] liquid crystals.

The theory developed in Ref. [1] refers to an infi-
nite medium and therefore can be applied only to thick
enough samples. In fact, generally, the different Fourier
components of the fluctuations become coupled if the
boundary conditions are taken into account. This fact
has been pointed out by various authors, considering
some particular cases [4,5]. Here we give a more general
approach to this problem by making use of the formalism
developed in Ref. [4]. In particular the effects due to an
external electric field and to the flexoelectricity are taken
into account.

The mean director orientation is assumed to be uni-
form: therefore our analysis cannot be applied for val-
ues of the external field corresponding to distorted struc-
tures. The distortion appears above a critical value of
the field, and it corresponds to a breaking of some sym-
metry element of the structure. The thermal fluctuations
are the physical mechanism responsible for this symme-
try breaking. The analysis given here allows us therefore
to tackle in a very natural way the important problem of
the transition from an undistorted to a distorted config-
uration.

Three types of transitions will be considered: the clas-
sical Fréedericksz transition that gives rise to a distorted
J

aperiodic structure, and the transitions towards periodic
static structures related to the flexoelectric effect [6-8]
and to the elastic anisotropy [9], respectively.

A unitary treatment of these three types of transitions,
based on the analysis of the thermal fluctuations, gives a
better understanding of the problem and a deeper insight
into the physics of these phenomena.

In Sec. IT we introduce the general theory; in Sec. III we
discuss some approximated solutions, while in Sec. IV the
exact solutions are considered. In Sec. V we separately
analyze the effects of the flexoelectric coupling and of
the elastic anisotropy. In Sec. VI we analytically derive
a phase diagram for the different kinds of Fréedericksz-
type transitions. Finally in Sec. VII we summarize our
results.

II. THEORY

We consider a planar nematic-liquid-crystal (NLC) cell
occupying the region —d/2 < z < d/2, with strong an-
choring conditions and with the undistorted director ng
parallel to the x axis, in the presence of a uniform electric
field E directed along z. In a linearized theory, the fluc-
tuations give a distortion field én such that én - iy = 0;
therefore

5[1(1‘) = Gl(r)i + 92(1‘)5’ R (21)

where § and Z are the unit vectors parallel to the y and
z axis, respectively, and

Oi(z,y,z2 = 2£d/2) = Oy(z,y,z = £d/2) =0 . (2.2)

Taking into account the dielectric and the flexoelectric
coupling to the external electric field, the free energy of
the distorted configuration can be written as

F=Fo+ F, (2.3&)
1
Fo=1 /{Kl(el,z +02)% + Ka(O1,y — 02.) + K5(02, + O2,) — coca B262
— 2E[e101(01,: +O2,) +€3(01: + 0201, +0:0;;)]}dr, (2.3b)
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where K;, K., K3 are the splay, twist, and bend elas-
tic constants, respectively; € is the free-space permittiv-
ity; €, is the dielectric anisotropy, equal to the difference
€ — €. between the dielectric constant parallel and per-
pendicular to the director, respectively; e; and ez are the
flexoelectric coeflicients; ©;; (i = 1,2; j = z,y, 2) indi-
cates the partial derivative of ©; with respect to j; F
is an average electric field, directed along z; finally F;
is the contribution to the free energy coming from the
gradients of the electric field that are generated by the
polarization charges induced by the distortion.

The quantity F;, which is zero in the absence of di-
electric anisotropy, is usually neglected in the literature
when small distortions are considered, such as, for in-
stance, when the threshold field for periodic Fréedericksz
transitions is evaluated [7,9,10]. However, this term is
generally of the same order of magnitude as the others,
and therefore it can give relevant effects. In Appendix A
it is shown, with the help of a perturbation expansion of
the electric field in terms of the distortions, that for fluc-
tuation modes that are homogeneous in the z direction,
F; is of order higher than two in the distortions, and thus
it can set to zero in our linear analysis. In the following
we will concentrate our attention on such z-independent
fluctuations, since the critical modes giving rise to all the
known Fréedericksz-like transitions are of this type. It is
therefore convenient to first consider only the contribu-
tion Fp to the free energy. The given analysis and the
conclusions drawn will be exact in the particular case of
fluctuations homogeneous in the = direction.

The effect of F; on the other fluctuations will be briefly
discussed at the end of this section.

With the help of the strong anchoring conditions (2.2)
and imposing periodic boundary conditions along the
transverse directions for ¢ = +L/2 and y = £L/2, where
the limit L — oo is to be taken at the end, an integration
by parts of Fy yields

_1
T2

_(©
o= (&)
©! is the transpose of ©, and L is the 2 x 2 linear matrix
operator whose elements £;; (%,j = 1,2) are given by

Fo /etz:e dr , (2.4)

where

(2.5)

8?2 o? 9? 2
L= —Ksé‘;-z' - Kzé? — Kl@ — € E°,  (2.6a)
L= —(Ki - K)o — (e —e) B, (2.60)
12 = 1 2) 5,82 1-es)Bg (2.

2

d
—A + K3Q3 + K2Q} — Kla;

(K1~ K2)Qy 3z — (e1 — ) BQy

d

—€aeoE? —(K1-— Kz)QyE; —(e1—e3)EQy ( 0, ) 0
d? 0, | =

—A+ K3Q2 + K1Q?% — K, 2

o2 a3
[,21 = —(K1 - Kz)—aw‘; + (81 - 63)E5—y- y (26C)
0? 9?2 0?
['22 = —K3w - Klgy—z - Kzg . (2.6d)

Thanks to the boundary conditions that we have im-
posed, it is easily shown that £ is self-adjoint: this means
that it is possible to build an orthonormal complete set
of eigenfunctions, or normal modes, ©, of the operator

L,

£O. = A0, , /egeﬁ dr =605,  (27)

where A, is a real number and .4 is the Kronecker delta.
At any given time ¢, the fluctuation ©(r,t) can then
be decomposed as a weighted sum of eigenfunctions

O(r,t) = Y ca(t)Oul(r) ;

a

(2.8)

inserting this expression in (2.4) and using Egs. (2.7), the
corresponding free energy reads
1

.7'-0 = - CiAa .

: (2.9)

a

From the equipartition theorem, the thermal average of
the square of the amplitude of each normal mode O, is
then given by

KgT
Ay’

(c2) = (2.10)
where K is Boltzmann’s constant and T is the absolute
temperature.

Therefore the eigenvalue A, determines the amplitude
of the fluctuation ©,; it also determines its decay con-
stant 4, which is given by A, /74, where 7, is a suitable
viscosity coefficient. The Fréedericksz-type second-order
transitions are obtained by considering the F dependence
of A,; the first eigenfunction whose eigenvalue A becomes
equal to zero is the critical mode: it is characterized by
a huge increase of its amplitude and a critical slowing
down.

The symmetries of the operator £ suggest looking for
eigenfunctions of the type

O, = cos(Q,x) cos(Qyy) 01(2) ,
O, = cos(Q,x) sin(Qyy) 02(2) .

Fully equivalent solutions with sin(Q.z) instead of
cos(Qx) and with cos(Qyy) and sin(Q,y) interchanged
are also allowed. By inserting these solutions into the
eigenvalue equation £LO = AO one obtains

(2.11a)
(2.11b)

(2.12)

dz?
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For Q, = 0 the matrix operator in (2.12) is diago-
nal and its eigenfunctions are identical to the solutions
valid for an unbounded medium, with the only differ-
ence that the @, component of the wave vector Q is
now quantized. Two independent sets of solutions are
obtained that correspond to splay-bend and twist-bend
distortions, respectively. These fluctuation modes can be
separately detected in light-scattering experiments with
polarized light: in fact, most experiments have been per-
formed under this condition and are very easily inter-
preted since the different Fourier components of the fluc-
tuations are uncoupled.

The terms containing the component @, appear in
such a way that the solutions (2.11a) and (2.11b) cor-
responding to the set of parameters Q, = 0, A = Ag
and Q. # 0, A = Ag + K3Q? are exactly the same. The
most important implication of this fact is that the first
zero of A, which gives rise to a second-order Fréedericksz-
type transition, is expected to occur at Q. = 0, since A
monotonically increases by increasing Q,. This property
gives a theoretical explanation to the fact that the static
periodic structures of this type that have been observed
are characterized by Q, = 0. However, we recall that the
above analysis is based only on the contribution F, to the
total free energy and therefore is exact only for ¢, = 0,
since in this case F; = 0 even for Q, # 0. In the gen-
eral case €,,Q, # 0, using an approach similar to that
outlined in Appendix A, or alternatively taking the fluc-
tuation in the electric potential as a third free parameter
(and therefore increasing by one the dimensions of the
problem), one can show that the electric field gradients
give rise to an additional dielectric contribution to the
right hand side of Eq. (2.6a) that is proportional to €2 and
always increases the free energy, plus two nondiagonal
flexoelectric terms in the right hand sides of Egs. (2.6b)
and (2.6¢) proportional to €,(e; +e3) that are nonzero for
fluctuation modes that depend both on = and y. There-
fore in the absence of these latter flexoelectric contribu-
tions, i.e., for e; + e3 = 0, the Fréedericksz transition, if
any, will still occur at Q. = 0, while for e,(e; + e3) #0
a thorough numerical analysis would be required in or-
der to check whether an oblique pattern is allowed for a
suitable choice of the parameters.

For the above reasons, in the following we only con-
sider the @, dependence of A and 6;(z) for Q, = 0.
The corresponding fluctuations can be detected in a light-
scattering experiment with the scattering plane orthogo-

]

nal to the undistorted director. Such a scattering geom-
etry has some advantages with respect to the previously
quoted one [3].

III. SOLUTIONS OF THE EIGENVALUE
EQUATION FOR Qx = 0 AND SMALL Qy

For Q. = 0 the eigenvalue equations (2.12) are ex-
act. Even in this simple case, such equations are rather
cumbersome from both the mathematical and the phys-
ical point of view, owing to the presence of many energy
terms and of the corresponding parameters. A very sim-
ple analysis of the role played by the various terms is,
however, possible if we consider the limit of small @,.
In fact the nondiagonal elements of the matrix operator
appearing in Eq. (2.12) are identically zero for @, = 0.
In this limiting case two independent sets Ay, and As,
of eigenvalues with the corresponding eigenfunctions are
very easily found, which constitute a good basis for a
perturbation expansion of the solutions in a power series
of the parameter Q,. This gives approximate solutions,
where the roles of the various terms are very simply dis-
played. A perturbation expansion up to second-order
powers in @, of the eigenvalues is given in Appendix B.

In order to simplify the system of Eqgs. (2.12) and point
out the essential parameters of the theory, we set

™

T
Qz:O s Qy:Eq s Qz:Ep:
2
_ K /\:<é) A’
m K1

= E s
1/2
1 €o
= — —_— Ed N = .
v ™ (K1> ) ¢ \/€0K1

The explicit form of Eq. (2.12) with the new symbols is
given in Appendix B.

We note that only the sign of the dielectric
anisotropy €, is important: in fact its absolute value can
be absorbed by a suitable redefinition of the normalized
applied voltage v and of the normalized flexoelectric con-
stant e; in the following we will concentrate our attention
on the case ¢, > 0.

In order to display the main features of the solutions,
we give—up to a normalization constant—the first-order
expansion in q of the first splay eigenmode

r

(3.1)

) cos(mz/d)
1) cos(mz/d) (1—7)q 4m sin(mmz/d) (3.2)
(02> l_eavz_rqev+ p m:; 1—m21 — ev2 — rm?

Equation (3.2) shows that the flexoelectricity, which
is represented by the term containing the parameter e,
simply mixes the first splay mode with the first twist
mode. The elastic anisotropy, corresponding to nonzero
values of the quantity (1 —r), has more dramatic effects,
since it mixes the first even splay mode with all the odd
twist modes.

r

These results can be generalized as follows: the unper-
turbed solutions of both splay and twist type are alterna-
tively even and odd functions of z. The flexoelectricity,
in the absence of the elastic anisotropy, simply mixes the
splay and twist modes with the same Fourier components
and the final exact solutions are indeed very simple, as
we will show in Sec. V. The elastic anisotropy, in the
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absence of flexoelectricity, instead, mixes even 6; func-
tions with odd 6, functions, and vice versa. In the final
exact solutions the functions 6,(z), 62(z) are therefore,
respectively, even-odd or odd-even. If both the elastic
anisotropy and the flexoelectricity are present, the exact
solutions are very complex, without any definite symme-
try, as shown in the following section. The perturbation
expansions given in Appendix B will be reconsidered in
Sec. VI and will be used to study the Fréedericksz-type
transitions.

IV. EXACT SOLUTIONS FOR Qx =0

The solutions of the eigenvalue equations (2.12) with
the boundary conditions (2.2) for any allowed eigen-
value A are given by a linear combination of the four
solutions found for an unbounded medium with the same
A value. These are

( 3; ) - ( Zg; ) exp(impz/d) ,

where 0g1, 892, and p must satisfy the system of equations

—i(1—r)gp — evq
_/\_,_qz +7'P2

x(?ﬁl):ﬂ. (4.2)

Nontrivial solutions are found for

(4.1)

A+ rg? +p? — v
i(1—r)gp — evq

C1 C2

C1 C2
ajcy — Prs1 azex — B2s2
aycy + Pis1 azez + B2s2

det

or, equivalently,

t t
(ﬂz - &) (ﬂz - @) + (o1 —az)?=0, (4.8)
ts t
where
o TPi o (TP
c,-—cos(z) s Sz—Sln(Z) )
(4.9)
o TPi _
t,—tan(z) , 1=1,2.

Equation (4.8) must be considered as an implicit defini-
tion of the eigenvalues A as a function of v, ¢ and of the
material parameters 7, ¢,, e, through an equation of the
form

g(A,v,q;7,€0,€) = 0. (4.10)
In fact Egs. (4.3)—(4.5d) and (4.9) define o, 8;, ¢, si,
and t; as functions of the above parameters.

Once the eigenvalue problem is solved, the relations
among the unknowns a; that define the eigenfunctions

P +¢*)? -b(p*+¢*)+c=0, (4.3)
bo2 _ 0448, (4.4)
o1
where
b= /\M + eqv? (4.5a)
r
2 _ o2 2 27, 2
o A [€a(l —7)g% — €a X + €2V , (4.5b)
r
_ evq
a= ——q2 e (4.5¢)
_ (A-=r)gp
B = ——————q2 Tt (4.5d)

The four solutions correspond to p = £p;, +p2. A linear
combination of these solutions gives the following eigen-
functions:

0, =ajcosé; +azcoséy +azsin; + agsinéy ,

02 = ay (o coséy — Bysinéy) + az(az cos €y — B2sinéz)
+as(aysiné; + By cos &)
+a4(azsinéy + B2 coséa)

(4.6)

where & = 7wp1z/d, {& = mp2z/d, a1 = a(p = p1),
az = a(p = p2), 1 = B(p = p1), B2 = Blp = p2)-
The four boundary conditions (2.2) give a system of
four linear homogeneous equations in the unknowns a;

(¢=1,...,4), which have nontrivial solutions only if
S1 So
—81 —S82
—0, 4.7
aisy + ey azsz + Bae2 (4.7)
—ay81 + ey —azss + Bace
I
are easily found to be
a ¢ as 1 a; — as — byt + bats
a1 ¢ | ay  t b b ’
a1 c2 a B et 22
t, to
a s
4= (4.11)
as S2

Equations (4.1)—(4.11) require some comments. Start-
ing from the complex solutions (4.1), we have tried to
make use of strictly real quantities. However, the pa-
rameters p;, O, and a3 can actually be purely imaginary
for large intervals of the curves A;,(q) for low n values. In
order to recover real expressions, it is enough to express
in Egs. (4.6) the trigonometric functions containing p; in
terms of hyperbolic functions and to make use of the new
parameters 8, = i3, and @s = iaz, which are real.

V. EIGENFUNCTIONS AND EIGENVALUES

In Secs. III and IV we have shown that, even with the
simplifying condition @, = 0, the actual shape of the
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eigenmodes is rather complex in a cell of finite thickness,
owing to the coupling effects of the flexoelectricity and of
the elastic constant anisotropy. It seems therefore inter-
esting to consider separately the two sources of coupling.
We first consider the role of flexoelectricity, by assum-
ing
e#A0 |, K =K,.
Equations (4.2)-(4.9) now become strictly analytic and
very simple, giving

(5.1)

Pin =Pan =N, (5.2a)

Ain =17 +¢% — Leav? Fo(de2v® + €2¢%)?,  (5.2b)

ain = gev(n® + g% — Ain) 7!
= qe[%eav + (%eivz + 62(12)1/2]_1
(5.2¢)

= Q; ,

Bin =0, (5.2d)
with 7 = 1,2 [the upper and lower signs in Egs. (5.2b)
and (5.2¢) correspond to ¢ = 1 and i = 2, respectively]
andn=1,2,3....

As already noticed, the flexoelectricity couples the
modes with the same wave vector Q but different po-
larizations: the eigenmodes are harmonic functions of all
the coordinates. Their dependence on the coordinate y
is such that by increasing y at fixed z and z the director
describes an elliptical helix. The principal axes of the
ellipse are along z and y, and their ratio is equal to a;,.
The static periodic distortion that appears immediately
above the threshold field for the Pikin transition [8] dis-
plays the same characteristics. Such a distortion is sim-
ilar to the structure of an S} liquid crystal, with the
difference that here the helix is elliptical with generatri-
ces orthogonal to the undistorted director, whereas in S
it is circular with generatrices parallel to the undistorted
director. Figures 1 and 2 show the dependence of the
eigenvalues A;, and of the ellipticity «; on the transverse
normalized wave vector g for three different values of the
normalized voltage v. The minimum voltage for which
the first eigenvalue A1;(q) becomes equal to zero defines
the critical voltage v. and the critical transverse wave
vector q. for a second-order periodic Fréedericksz-type
transition: the periodicity of the deformed equilibrium
structure at the transition threshold is given by g..

Let us now consider the effect of the elastic anisotropy,
by assuming

e=0 , (5.3)

Ki %K, .

As already pointed out in Sec. III, the free-energy term
depending on the anisotropy parameter (1 —r) = (K; —
K,)/K; gives a coupling between the odd (even) func-
tions 6;(z) and the even (odd) functions 6(z). The
eigenfunctions display therefore an odd-even or even-odd
symmetry for what concerns the functions 6;(z) given by
Eq. (4.6), where the parameters a; and a; are now iden-
tically equal to zero. The characteristic equation (4.8)

1.5
A ] /

] ,/
1.0 4 /

B Ve

- /

. 7

- 7/

1 e
054  T~o_ -7

¥ A1y

1
040AT1IVV'II‘]ITYIIIVV!‘Y!YVX !l/l

0.0 0.5 1.0 1.5

q

FIG. 1. Behavior of the first normalized eigenvalues X [see
Eq. (5.2b)] as a function of the normalized transverse wave
vector q for r = 1 and e*/e, = 4. The eigenfunction associ-
ated to A1y (A1) is a pure splay (twist) deformation for ¢ = 0.
The solid lines correspond to the critical voltage er/?v = 0.8,
the short-dashed lines to 6,11/21) = 0.6, the long-dashed lines to

ei/zv =0.9.

splits in the two separate equations

t181 = 282
t182 = t2f

for even #; and odd 6, ,

for odd 6, and even 6, .

The dependence of ©; and ©5 on the other coordinates
is such that the director describes an elliptical helix if we
increase y at fixed ¢ and z. However, the shape of the
ellipse is here strongly dependent on the z coordinate.

For the most general case, corresponding to e # 0 and
K, # K, except for the absence of the even-odd sym-
metry, no new features are found.

VI. FREEDERICKSZ-TYPE TRANSITIONS

The free energy F associated with any eigenmode and
the corresponding eigenvalue are positive definite at zero

27
:
a S
+
1
=
: P —
i /// (e 8}
17
4
[y
0 2 O O O O S O
0.0 0.5 1.0 1.5
q

FIG. 2. Behavior of the ellipticity a; [see Eq. (5.2¢)] as a
function of the normalized transverse wave vector g for the
same parameters as in Fig. 1.
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field. By increasing the field, all the eigenvalues decrease
and the first one which becomes equal to zero defines the
critical field and the critical wave vector ¢, for a second-
order Fréedericksz-type transition. As already pointed
out, this occurs at Q, = 0 if the term F; is not taken
into account.

The search for v. and g, requires in general a numerical
computation, owing to the great complexity of Eq. (4.7)
or (4.8) which defines the eigenvalues A;,. It is convenient
to consider the A;,(g) plots for different values of v and
for fixed values of the material parameters. Figures 1
and 3 show the behavior of these curves. In Fig. 3 the
critical point lies on the curve Az2(q) corresponding to
/%y = 0.7536. As is evident, this point is defined by
the conditions A = 0, d\/dg = 0 (with d>)/dg? > 0), or,
equivalently,

9(07'”::’ qdc;€ay Ty e) =0 ) (61a)
a
B_Z(O7v0aqc;em'", 6) =0, (G.Ib)

which constitute a system of two equations in the two un-
knowns v, g.. We note that the eigenvalues have been la-
beled in such a way that, for ¢ = 0, A1, (A2, ) corresponds
to pure splay (twist) deformations; this convention, and
the strong mixing between splay and twist deformations
with different parity for high elastic anisotropy, is the
source of the interchange of the roles of A\j; and Aj; in
Fig. 3 above the threshold voltage.

The dependence of v, and g. on r in the absence of
flexoelectricity (e = 0) has been intensively studied re-
cently by taking into account the influence of a further
field and for different boundary conditions. The oppo-
site case, where the flexoelectricity plays a dominant role,
has been studied by Pikin and co-workers [7,8]. Here we
want to give a more general picture of the dependence of
ge and v. on the parameters ¢,, €, 7, with the boundary
conditions (2.2).

In Ref. [9] it has been shown that in the absence of
flexoelectricity (e = 0) a critical value r¢ for r exists, such

FIG. 3. Same as Fig. 1 but for e = 0, » = 0.1, and
v =07 (short-dashed lines), ex/?v = 0.7536 (solid lines),
and €3/?v = 0.8 (long-dashed lines). The A;n (A2n) eigenval-

ues correspond to pure splay (twist) deformations for ¢ = 0.

that the Fréedericksz transition gives rise to an aperiodic
distortion for > r¢ and to a periodic distortion for
r < ro. A numerical analysis shows that for » < ro the
dependence of ¢q. and v. on r is of the type

gec x (ro — 7')1/2, (voe — ve) o (o — 7')2 , (6.2)

where vg. is the critical field for » = rg, g. = 0. If we
consider the critical wave vector g. as a function of 7, we
have here a second-order transition, with » and ¢. play-
ing the roles of control parameter and order parameter,
respectively. The functions g.(r) and v.(r) for e = 0 are
plotted in Fig. 4 (curves a). The same figure gives the
curves corresponding to different values of the flexoelec-
tric coefficient e. As is evident, all these curves display
a similar behavior for the asymptotic properties given
by Eq. (6.2), where now the quantity 7o depends on e.
This dependence is shown in Fig. 5, which is a phase dia-
gram for the two possible types of distortions that appear
immediately above the critical field. The stable config-
uration is aperiodic if the material parameters are such
that the representative point in the plane (r,e?/¢,) lies in
the lower part of the diagram and periodic in the oppo-
site case. Therefore Figs. 4 and 5 give a unified picture
for the two types of instabilities. The striking feature
that emerges from Fig. 4 is that for » < 0.1 the critical

1.5

9e

1.0

0.5

a b c\ d\ e\ flg
OO T T T I T

RS RIS AR S A S S A B N B A A R A I B B B A B B A S

o
-
N

1.0

0.5

TR N N B N N B B N S|

0 .O rrrr— r T T [T T T 1T 11T
0 1 r 2
FIG. 4. Normalized critical transverse wave vector ¢g. and
normalized critical voltage V. = €?v as a function of the
elastic anisotropy r for e?/e, = 0 (curves a), 0.5 (curves b),
1 (curves c), 1.5 (curves d), 2 (curves e), 2.5 (curves f), 3
(curves g).
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67
2 ]
e“ /e, ]
4]
2]
O rrrrrrrrryrrrrrrr o rrroi
0 1 2

r

FIG. 5. Phase diagram for the various kinds of sec-
ond-order transitions: the region a; > 0 (a1 < 0) corresponds
to transversally homogeneous (periodic) deformations.

wave vector ¢. becomes practically independent of the
flexoelectric coefficient e.

The functions g.(r) and v.(r) have been found by a
numerical analysis. However, a fully analytical treatment
of the transition in the limit of small g is possible and
it has indeed been done in Ref. [11] for the particular
case e = 0. Here we give a similar and even simpler
analysis for any value of e, based on the assumption that
the function g(A,q,v,e,€,,7) and its first derivatives are
continuous.

Let us start from the fact that the critical field for an
aperiodic transition (g = 0) is given by

v = —. (6.3)

The A value that vanishes is A;1(q¢ = 0), whereas all the
other values \;,(¢ = 0) are positive. Equations (B6),
(B8a), and (B8b) of Appendix B give, for v2 = 1/¢, and
small ¢,

Al = 01(12 ) (6.4)
8 2 2,2
T

8 8 €,

It is very easy to show that the two domains of the phase
diagram correspond to the two possible signs of the quan-
tity a;.

If a; > 0, the critical value g. of g is equal to zero. This
means that the field defined by Eq. (6.3) is the critical
field for the well-known Fréedericksz transition, giving
rise to an aperiodic distortion. Strictly speaking, other
zeros of A could be present in addition to the one con-
sidered here, corresponding to ¢ # 0 and vZ < 1/¢,. In
this case, they would give rise to a first-order transition
in the sense specified above, namely, with a discontinuity
of g (in the usual sense, a first-order Fréedericksz transi-
tion displays a discontinuity in the distortion amplitude;
in order to study such types of transitions, higher-order
terms in the free energy must be taken into account).
Such a possibility has been tested numerically for differ-

ent values of the material parameters and it has not been
found.

If a; < 0, the exact curve A(q) intercepts the ¢ axis in
at least another point, since A — +oo for ¢ — oco. This
means that the value of v given by Eq. (6.3) is above the
critical value v, for a Fréedericksz transition with g, # 0.
In fact, for v2 < 1/e, and q = 0 all the eigenvalues are
positive.

Now it is straightforward to verify that the upper and
lower part of the diagram correspond to negative and pos-
itive values of a;, respectively. In fact, the quantity a,
monotonically increases with r for fixed e%/¢, and mono-
tonically decreases with e? /¢, for fixed .

In conclusion, we have shown that the main charac-
teristics of the Fréedericksz transition only depend on
the material parameters r and e%/e,. If one of these
parameters is changed, in such a way that the represen-
tative point in the plane (r,e?/e,) crosses the line a; = 0
from below, the quantity g. changes continuously from
the value ¢. = 0 to a value g. # 0.

We finally notice that the asymptotic relations (6.2)
can be obtained under the same hypothesis of continuity
of the function g(A,q,v,e,€,,7) and its derivatives.

VII. DISCUSSION

Let us summarize the results obtained. The theory
of the thermal fluctuations of the director in NLC has
been originally developed for an infinite medium, where
the fluctuations can be considered as a sum of indepen-
dent overdamped plane waves. In a finite sample the
actual shape of the fluctuation eigenmodes is more com-
plex. Here we have considered the case of a planar NLC
cell with strong anchoring conditions. In homeotropic
cells no coupling of the different Fourier components oc-
curs [12].

The main features of the eigenmodes in the absence
of the electric field are the same as that expected for
any wave with two possible polarization states in an
anisotropic slab, such as, for example, an electromagnetic
wave. In fact, the reflection at each boundary plane gen-
erates waves with two different polarizations and wave
vectors. The eigenmodes are therefore, in general, a su-
perposition of four plane waves with z components of the
wave vector Q equal to £Q,;, £Q,>. The fact that the
waves associated to the director fluctuations are over-
damped does not change this general feature.

In the presence of an electric field, reasonably simple
and exact expressions for the eigenmodes and the eigen-
values are available only if @, = 0. The main part of
this paper is devoted to such a case, and more precisely
to the study of the static periodic structures that appear
above the threshold field for a Fréedericksz-type second-
order transition. In the framework of the theory devel-
oped here, these transitions are found by considering the
A(Q,) curves and looking at the points where A = 0 and
OA/8Q, = 0. This approach to the Fréedericksz transi-
tion is physically more satisfactory and mathematically
simpler than that given in Refs. [6-9,11], and allows us
to recover all the already known results; in Ref. [12] it
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has been applied to homeotropic cells. The case of pla-
nar cells considered here is much more complex, since the
Fréedericksz transition can give rise to periodic or aperi-
odic distortions depending on the anisotropy parameter
r = (K, — K3)/K; and on the parameter e2/¢,. A phase
diagram for the two types of distortions has been ob-
tained numerically, and confirmed by a fully analytic cal-
culation based on the perturbation expansion presented
in Appendix B: it gives a quantitative basis to the experi-
mentally well-known result that the flexoelectricity plays
an essential role in driving the periodic distortions only
for small dielectric anisotropy (typically for |e,| < 0.2).
This approach allows for a unified treatment of the classi-
cal Fréedericksz transition and of the Pikin and Lonberg-
Meyer instabilities.

The thermal fluctuations that we have theoretically
considered here are generally studied experimentally by
light-scattering techniques. From this point of view, we
have shown that the interpretation of any light-scattering
experiment involving eigenmodes with low @, and Q, #
0 requires a careful and complex analysis.

An even more complicated analysis, not given here, is
required for the light-scattering experiments where the
undistorted director lies in the scattering plane and the
sample is acted upon by an electric field.

In conclusion, this paper gives a contribution to the
understanding of the thermal fluctuations and to the in-
terpretation of the light-scattering experiments in real
NLC samples. The main characteristics of these topics
have been known for many years, but an exact compu-
tation had never been done before and it requires rather
involved mathematics, as shown here. To this purpose
it must be noticed that the complexity of the problem is
even greater if the dynamics of the fluctuation is consid-
ered. In fact, the boundary effects on the flow associated
to the director fluctuations must be taken into account.
A fully hydrodynamic treatment is done in Ref. [5] for the
particular case @y = 0 and zero field. An extension of
this treatment to the case @, # 0 and E # 0 is essential
for the interpretation of the light-scattering experiments
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APPENDIX A

In order to evaluate the electrostatic energy we must
solve the Maxwell equations for the distorted configu-
ration. Only the terms up to the second order in the
distortion parameter © = (©1,0,) are considered. We
therefore write

E=E®z+EM 1 E® 4 0(63%). (A1)

The dielectric tensor is € = € l‘f + €, fifi, where i =

(1-62%/2 - 02/2)% + 0,9 + ©,%. The flexoelectric po-

larization is given by
P;=efiVii—esii x Vxii. (A2)

This gives for the vector D = ¢o¢ - E+ P the expression

D = e, E®2 + DV + D® 4 0(0%), (A3)
where
fllEa(cl) + €, E®0, O2y+ 01,
DY = €0 e_LEISI) + e 0
e_LEﬁl) 0
0
+e3 62,11 ) (A4)
el,z
€”E,(;2) 92E§,1) + elEgl)
D®= ¢, E_LEs(IZ) +eoca | O2E + E0,0,
eLEP 0:E{" + E©6}
—9191)1 - 9292,1:
+€1 9282,,, + 9291);
©0:0;,+6:0,,
—9282,1 - 9191,:1:
+e3 0:0;, + 0,0, (A5)

elel,z + e192,1,1

The field equation VxE = 0 can be satisfied by assuming

ot the ent E=E9z _vv® _yv® (A6)
as long as the relaxation times are concerned, but it is
far beyond the scope of this paper. The equation V - D = 0 straightforwardly gives
J
Avw =9 [eaE(O)el + 2%, +0..)|, (A7)
oz €0
AVA =, i(ezE“) +6,EM) + ﬁ(ezE(U +E©0,6,) + ﬁ(elEm +E®e?)
oz Y z Ay z 0z e !
cates[ 19 o1 02,02 107, +6,0,,,+0
+ €o _58—.’32‘( 1 + 2) + 2,y + 1,z + 1Y2,zy + 2el,zy + 9191,21 + ezez,yy
2 2
+7210,,0:,. + 220,,0,,, (A8)
€o €0
.
where z
82 52 52 f=fe-30E-€-E-P; E, (A10)
Aa=6n@+u6—yz+ua—;- (A9) f=f+D-E=f.+1l¢E-2-E, (A11)

The free-energy densities for fixed voltage and for fixed
charge at the electrodes are given, respectively, by [13,14]

where f. is the elastic free-energy density.
Let us now discuss the equations obtained. Equa-
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tion (A7) clearly shows that a very important role is
played by the = dependence of the distortion; in fact the
first order-corrections for E are identically zero if the dis-
tortion angles ©; are independent of , namely, if Q, = 0.
In this case our equations greatly simplify, giving, up to
second-order terms,

E=EXy+ (EO +E®)z, (A12)
€ E=c01E9%+ (L EP + . EY0,0,)y
+(eLE® + ¢, E® + ,E©02)3 (A13)

f=Ff+ %€0€_LE(0)2 + 1B (2  EP®) + ,E©0%) .
(A14)

The evaluation of the field component E£2) , appearing
in Eq. (A14), requires the integration of Eq. (A8). This
is not an easy task. Therefore we only show that, for
Q. = 0, the assumption of uniform electric field gives the
exact value for the total free energy up to second-order
terms, namely, that the term F; in Eq. (2.3a) is equal to
zero. More precisely we show that the theory developed
in Sec. IT under the assumption F; = 0 is self-consistent
if i = fi(y, z) and if the average electric field E appearing
in Eq. (2.3b) is suitably chosen. Equations (2.11a) and
(2.11b) give for Q, =0

01 = cos(Qy) 1 (2) ,
02 = sin(Qyy) 0(2) -

We now solve Eq. (A8) by neglecting the flexoelectricity
(which will be considered later),

(Al5a)
(A15b)

6? 0* €
v = e g
<8y2 022 ) ) €1 B cos(2Qu)

< Q@)+ 5 10700))

1 eq d
+-—2EO® _—§2(z).

Al6
2 € dz ( )

The solution of Eq. (A16) can be written in the form

V® = V) (2) cos(2Qyu) + V27 (2) . (A17)
The first term of V(?) gives no contribution to the free
energy. In fact, the corresponding term in the free-energy
density, given by Eq. (A14), depends linearly on E® and
its integral vanishes when the integration is performed
over a full period along y. The function VI(Q)(Z) is easily
evaluated from Eq. (A16), and depends on two arbitrary
constants which can be adjusted to have Vl(z) (£d/2) = 0.
This ensures the equipotentiality of the electrodes.

|

d\? d?
—/\—}-rqz—(;) — — €0

The term Vz(z)(z), coming from the y-independent
source term in Eq. (A16), gives E?’ = —E©®0%¢,/2¢, .
The final expression of the free-energy density has an av-
erage value

f=fet Leoel (BW)? = Lege,(E)202 . (A18)
The first term gives the electrostatic energy of the undis-
torted configuration, the second term becomes equal to
the average value of the corresponding term in Eq. (2.3b)
if we assume E = E(®),

In conclusion, we have shown that the actual field E
can be written as the sum of a uniform field EZ and of
a nonuniform field E?) (y, z) which gives no contribution
to the total dielectric free energy. It is now evident that
this nonuniform part of the field, which is second order,
gives a contribution to the flexoelectric part of the free
energy which is of order higher than two.

We have considered here the free energy for fixed
charge at the electrodes. It is immediately verified that
such a charge, which is given by the integral of D, over
y at z = £d/2, does not depend on ©. It is, however, to
be noticed that the local value of D, at z = +d/2 is not
constant. This means that the fluctuations induce sur-
face currents at the electrodes, a fact which gives a new
dissipation term, in addition to the well-known terms re-
lated to the viscosity.

The use of the free energy for fixed voltage requires
very little change in our computation, since the potential
at each electrode is in any case constant, and gives the
same result. In order to obtain a ©-independent voltage
the function Vz(z)(z) in Eq. (A17) must be chosen in such
a way as to give

1 e,

E® = E©6? 4+ EP Al9
z 2 €L 1 + o ( )
with
E® = L pogz (A20)
26L
Let wus finally briefly discuss the general case

where Q. # 0. As is evident from Eq. (A7), the dis-
tortion gives field gradients which are of the same order
of ©, and which cannot be neglected in any treatment
of the thermal fluctuations in the presence of an electric
field. However, the integration of Eqgs. (A7) and (A8) is
not an easy task. It will not be done here, and we only
give in this paper the exact solutions for the case Q, = 0.

APPENDIX B

Let us first rewrite the eigenvalue equation (2.12) with
the conditions and the symbols defined in Eq. (3.1),

=0. (B1)
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We consider the g-dependent terms as a perturba-
tion. The unperturbed solutions correspond to pure splay
(81 # 0, 62 = 0) and pure twist (§; = 0, 8, # 0) deforma-
tions, respectively. The nonzero functions 6;(z) of each
type are alternatively given by cos(nnz/d), with odd n,
and sin(7nz/d), with even n. The corresponding X values
are

/\(133 =n? — e, (splay), (B2)
A = rn? (twist) . (B3)

There are no first-order corrections to \;, and at second
order one easily obtains

62‘02 el F2
AP PG

m=1 2m

(B4a)
2,2 el 2
Aon =20 42 (14 2% S omm )

: AP IFORTC)

(B4b)
where
0 if (n —m) is even
={1-r 4
Lrim 1-r nzi:n—z if (n —m) is odd . (BS)
. _

The series can be summed exactly: we only give the
results for n = 1, which are of interest for the discussion
of the Fréedericksz-type transitions

All =1- €a112 + a].q2 , (B6)
A21 =r+ a2q2 ) (B7)
where
_ e2v?
= T+1—eav2—r
(1-r)2 1 4z, (wzl)
Y et
T a:f—1+1r(z§—1)2co 2 ’
(B8a)
1— 2
o= Umar) (B8b)
ay = 1 e’v?
2 1—¢€qv?2—1r
1 4z, Ty
1—r)? t ( ) ,
+(1-r) z2 -1 + m(z2 — 1)2 M\
(B8c)
T3 =71+ ev?. (B8d)
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